Case One
Hemisection of the distal root of tooth #19.

PreOp | PostOp | 13 mo. Recall

Case Two
Hemisection of the distal root of tooth #30.

PreOp | PostOp | Clinical Photograph

* These images were published in The Color Atlas of Endodontics, Dr. William T. Johnson, p. 162, Copyright Elsevier 2002.

TREATMENT CONSIDERATIONS/PROGNOSIS > Remaining Coronal Tooth Structure

<table>
<thead>
<tr>
<th>FAVORABLE:</th>
<th>QUESTIONABLE:</th>
<th>UNFAVORABLE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Greater than 1.5 mm ferrule</td>
<td>• 1.0 to 1.5 mm ferrule</td>
<td>• Less than 1 mm ferrule</td>
</tr>
</tbody>
</table>

TREATMENT CONSIDERATIONS/PROGNOSIS > Crown Lengthening

<table>
<thead>
<tr>
<th>FAVORABLE:</th>
<th>QUESTIONABLE:</th>
<th>UNFAVORABLE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• None needed</td>
<td>• If required will not compromise the aesthetics or periodontal condition of adjacent teeth</td>
<td>• Treatment required that will affect the aesthetics or further compromise the osseous tissues (support) of the adjacent teeth</td>
</tr>
</tbody>
</table>

TREATMENT CONSIDERATIONS/PROGNOSIS > Endodontic Treatment

<table>
<thead>
<tr>
<th>FAVORABLE:</th>
<th>QUESTIONABLE:</th>
<th>UNFAVORABLE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Routine endodontic treatment or not required due to previous treatment</td>
<td>• Nonsurgical root canal retreatment required prior to root resection</td>
<td>• Canal calcification, complex canal and root morphology, and isolation complicate an ideal endodontic treatment result</td>
</tr>
</tbody>
</table>
FAVORABLE:
- Normal periodontium
- Normal probing depths (3 mm or less)
- The tooth exhibits pulp necrosis and isolated bone loss to the involved tooth or root

QUESTIONABLE:
- Moderate periodontal disease
- An isolated periodontal probing defect
- The tooth exhibits pulp necrosis and moderate bone loss

UNFAVORABLE:
- Advanced periodontal disease
- Generalized periodontal probing defects throughout the patient’s mouth
- The tooth exhibits pulp necrosis and there is generalized bone loss (horizontal and/or vertical)
Treatment Considerations/Prognosis

External Resorption

Case One
External resorptive defect on buccal aspect of tooth #29. Mineral trioxide aggregate (MTA) placed in the coronal 6 mm of canal and surgical repair with Geristore®

Case Two
Tooth #8 questionable prognosis; external resorption on the mesial with a periodontal probing defect on the mesiopalatal.

Case Three
Tooth #19 unfavorable prognosis; there is a large cervical resorptive defect on the buccal aspect of the distal root extending into the furcation.

Favorable:
- Minimal loss of tooth structure
- Located cervically but above the crestal bone
- The lesion is accessible for repair
- Apical root resorption associated with a tooth exhibiting pulp necrosis and apical pathosis

Questionable:
- Minimal impact on restorability of tooth
- Crown lengthening or orthodontic root extrusion may be required
- The pulp may be vital or necrotic

Unfavorable:
- Structural integrity of the tooth or root is compromised
- There are deep probing depths associated with the resorptive defect
- The defect is not accessible for repair surgically
Case One
Tooth #28 exhibiting a mid-root internal resorptive defect.

Case Two
Tooth #8 exhibiting an apical to mid-root internal resorptive lesion.

FAVORABLE:
- Small/medium defect
- A small lesion in the apical or mid-root area

QUESTIONABLE:
- Larger defect that does not perforate the root

UNFAVORABLE:
- A large defect that perforates the external root surface
Crown Fracture
Tooth #8 exhibiting a complicated coronal fracture, root canal treatment and bonding of the coronal segment.

TREATMENT CONSIDERATIONS/PROGNOSIS > Crown Fractures

FAVORABLE:
• Coronal fracture of enamel or dentin not exposing the pulp
• Coronal fracture of enamel and dentin exposing the pulp of a tooth with mature root development

QUESTIONABLE:
• Coronal fracture of enamel and dentin exposing the pulp with immature root development

UNFAVORABLE:
• Coronal fracture of enamel or enamel and dentin extending onto the root below the crestal bone
• Compromised restorability requiring crown lengthening or orthodontic root extrusion

Horizontal Root Fracture*
Horizontal root fractures of #8 and #9; the maxillary right central remained vital while the maxillary left central developed pulp necrosis requiring nonsurgical and surgical root canal treatment; prognosis favorable.

TREATMENT CONSIDERATIONS/PROGNOSIS > Horizontal Root Fractures

FAVORABLE:
• The fracture is located in the apical or middle third of the root
• There is no mobility
• The pulp is vital (note in the majority of root fractures the pulp retains vitality)

QUESTIONABLE:
• The fracture is located in the coronal portion of the root and the coronal segment is mobile
• There is no probing defect
• The pulp is necrotic
• A radiolucent area is noted at the fracture site

UNFAVORABLE:
• The fracture is located in the coronal portion of the root and the coronal segment is mobile
• There is sulcular communication and a probing defect

* These images were published in The Color Atlas of Endodontics, Dr. William T. Johnson, p. 176, Copyright Elsevier 2002.
Case One
Fracture of the mesial marginal ridge of tooth #5, stopping coronal to pulp floor.

Case Two
Tooth #30 exhibiting pulp necrosis and asymptomatic apical periodontitis; a crack was noted on the distal aspect of the pulp chamber under the composite during root canal treatment.

Cracked Tooth Progression
To Split Tooth*

Favorable prognosis
Questionable prognosis
Unfavorable prognosis

TREATMENT CONSIDERATIONS/PROGNOSIS > Cracked Tooth

FAVORABLE:
- Fracture in enamel only (crack line) or fracture in enamel and dentin
- The fracture line does not extend apical to the cemento-enamel junction
- There is no associated periodontal probing defect

QUESTIONABLE:
- The pulp may be vital requiring only a crown
- If pulp has irreversible pulpitis or necrosis, root canal treatment is indicated before the crown is placed

UNFAVORABLE:
- Fracture line extends apical to the cemento-enamel junction extending onto the root with an associated probing defect
- There is an osseous lesion of endodontic origin
TREATMENT CONSIDERATIONS/PROGNOSIS > Apical Periodontitis

The presence of periapical radiolucency is not an absolute indicator of a poor long-term prognosis. The vast majority of teeth with apical periodontitis can be expected to heal after nonsurgical or surgical endodontic treatment. Data indicate the presence of a lesion prior to treatment only decreases the prognosis slightly.

FAVORABLE:
- Pulp necrosis with or without a lesion present that responds to nonsurgical treatment

QUESTIONABLE:
- Pulp necrosis and a periapical lesion is present that does not respond to nonsurgical root canal treatment but can be treated surgically

UNFAVORABLE:
- Pulp necrosis and a periapical lesion is present that does not respond to nonsurgical root canal treatment or subsequent surgical intervention

Case One
A large periapical lesion resulting in an acute apical abscess from pulp necrosis of tooth #7.

PreOp

Acute Apical Abscess

PostOp

24 mo. Recall

Swelling Healed

Case Two
Non-healing endodontic lesion involving teeth #23, 24 and 25. Biopsy revealed lesion was a periodontal cyst with mucinous metaplasia. Super-EBA retrofillings were placed in each tooth.

PreOp

Cyst

PostOp

28 mo. Recall
FAVORABLE:
• The etiology for failure of the initial treatment can be identified
• Nonsurgical endodontic retreatment will correct the deficiency

QUESTIONABLE:
• The etiology for failure of the initial treatment cannot be identified
• Nonsurgical endodontic retreatment may not correct the deficiency

UNFAVORABLE:
• The etiology for failure of the initial treatment cannot be identified and corrected with nonsurgical retreatment and surgical treatment is not an option

Surgical Root Canal Treatment: Altered Anatomy
Surgical treatment of tooth #19 to correct apical transportation in the mesial root.

FAVORABLE:
• The procedural complication can be corrected with nonsurgical treatment, retreatment or apical surgery

QUESTIONABLE:
• Canals debrided and obturated to the procedural complication, there is no apical pathosis and the patient is followed on recall examination

UNFAVORABLE:
• The patient is symptomatic or a lesion persists and the procedural complication cannot be corrected and the tooth is not amenable to surgery (apicoectomy/intentional replantation)
Separated Instrument Case One
Tooth #30 exhibiting a fractured instrument in the mesial root; recall examination demonstrates a successful outcome.

![PreOp](image1) ![PostOp](image2) ![24 mo. Recall](image3)

Separated Instrument Case Two
Separated NiTi rotary instrument in palatal canal of tooth #4. Removed file with ultrasonics and copious irrigation; obturated with gutta-percha and AH Plus® sealer.

![PreOp](image4) ![Separated Instrument](image5) ![PostOp](image6)

![12 mo. Recall](image7) ![24 mo. Recall](image8)

TREATMENT CONSIDERATIONS/PROGNOSIS > Separated Instruments

<table>
<thead>
<tr>
<th>FAVORABLE:</th>
<th>QUESTIONABLE:</th>
<th>UNFAVORABLE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No periapical periodontitis</td>
<td>• Instruments fractured in the coronal or mid-root portion of the canal and cannot be retrieved</td>
<td></td>
</tr>
<tr>
<td>• In general, cases that have a separated instrument in the apical one-third of the root have favorable outcomes</td>
<td>• Patient asymptomatic</td>
<td>• The patient is symptomatic or a lesion persists requiring extensive procedures in order to retrieve instrument that would ultimately compromise long-term survival of the tooth and surgical treatment is not an option (apicoectomy/intentional replantation)</td>
</tr>
<tr>
<td>• Able to retrieve nonsurgically or surgically if periapical pathosis is present</td>
<td>• No periapical periodontitis</td>
<td></td>
</tr>
<tr>
<td>• Defect correctable with apical surgery</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Perforations Case One
Tooth #3 exhibiting a coronal perforation. Repaired with MTA in conjunction with nonsurgical root canal treatment.

FAVORABLE:
• Apical with no sulcular communication or osseous defect

QUESTIONABLE:
• Mid-root or furcal with no sulcular communication or osseous defect

UNFAVORABLE:
• Apical, crestal or furcal with sulcular communication and a probing defect with osseous destruction

Perforations Case Two
Tooth #30 with previous retreatment attempt resulting in furcal perforation. Retreatment performed using interim calcium hydroxide and furcal perforation repaired with MTA.

FAVORABLE:
• Immediate repair

QUESTIONABLE:
• Delayed repair

UNFAVORABLE:
• No repair or gross extrusion of the repair materials

TREATMENT CONSIDERATIONS/PROGNOSIS > Perforations-Location

TREATMENT CONSIDERATIONS/PROGNOSIS > Perforations-Time of Repair

TREATMENT CONSIDERATIONS/PROGNOSIS > Perforations-Size
Post Perforations Case One
Tooth #27 with sinus tract that traced to apical extent of post (no abnormal probings). Orthograde repair performed with MTA.

Post Perforations Case Two
Tooth #30 post perforation with screw post previously treated with paste obturation. Perforation repaired with MTA and tooth retreated.

TREATMENT CONSIDERATIONS/PROGNOSIS > Post Perforation

FAVORABLE:
- No sulcular communication or osseous destruction

QUESTIONABLE:
- No sulcular communication but osseous destruction is evident
- The perforation can be repaired surgically

UNFAVORABLE:
- Long standing with sulcular communication, a probing defect and osseous destruction

TREATMENT CONSIDERATIONS/PROGNOSIS > Strip Perforation

FAVORABLE:
- Small with no sulcular communication

QUESTIONABLE:
- No sulcular communication and osseous destruction that can be managed with internal repair or surgical intervention

UNFAVORABLE:
- Sulcular communication and osseous destruction that cannot be managed with internal repair or surgical intervention
Post Removal Case One
Tooth #8 requiring removal of a prefabricated post.

PreOp Clinical View Clinical View PostOp

Post Removal Case Two
Tooth #30 demonstrating incomplete paste obturation with threaded post and bonded resin core.

PreOp PostOp 12 mo. Recall

TREATMENT CONSIDERATIONS/PROGNOSIS

FAVORABLE:
- Prefabricated cylindrical stainless steel posts placed with traditional luting cements such as zinc phosphate

QUESTIONABLE:
- Cast post and cores placed with traditional luting cements such as zinc phosphate

UNFAVORABLE:
- Prefabricated posts (stainless steel or titanium), cast post and cores placed with bonded resins; threaded, fiber and ceramic posts that cannot be removed or removal compromises the remaining tooth structure
- Teeth that cannot be retreated or treated surgically

With the use of modern endodontic techniques, most posts can be retrieved with minimal damage to the tooth and root. Ceramic posts, fiber posts, threaded posts, cast posts and cores, and prefabricated posts placed with resins are most challenging to remove. In some instances the post may not have to be removed and the problem can be resolved by performing root-end surgery (apicoectomy).
Silver Point Retreatment Case One
Tooth #9 treated 25 years ago requiring retreatment.

PreOp Working Length PostOp

Silver Point Retreatment Case Two
Tooth #18 previously treated with silver points, filled short. Calcium hydroxide placed for two weeks.

PreOp PostOp 24 mo. Recall

Silver points were a popular core obturation material in the 1960s and early 1970s. While their stiffness made placement and length control an advantage, the material did not fill the canal in three dimensions resulting in leakage and subsequent corrosion.

FAVORABLE:
- Silver cones that extend into the chamber facilitating retrieval and have been cemented with a zinc-oxide eugenol sealer

QUESTIONABLE:
- Silver cones that are resected at the level of the canal orifice or have been cemented with zinc phosphate or polycarboxylate cement
- Silver cones that can be bypassed or teeth that can be treated surgically

UNFAVORABLE:
- Sectional silver cones placed apically in the root to permit placement of a post that cannot be retrieved or bypassed and the tooth is not a candidate for surgical intervention
Carrier-Based Systems
Tooth #3 demonstrating overextended carrier-based obturation.

Paste Retreatment
Tooth #30 demonstrating resorcinol-formaldehyde resin-based obturation. Retreatment carried out using interim calcium hydroxide.

TREATMENT CONSIDERATIONS/PROGNOSIS > Carrier-Based Systems/Pastes

Carrier-Based Systems
Carrier-based thermoplastic (e.g., Thermafil®) systems are similar to silver cones. Historically, the core material was metal, later replaced with plastic. Current technology includes cross-linked gutta-percha. They can generally be removed as the gutta-percha can be softened with heat and solvents facilitating removal.

Pastes
With the use of modern endodontic techniques most filling materials can be retrieved with minimal damage to the tooth and root.

FAVORABLE:
- Soft or soluble pastes, pastes in the chamber or coronal one-third of the root that are removed easily
- Plastic carrier-based thermoplastic obturators

QUESTIONABLE:
- Hard insoluble pastes in the chamber extending into the middle-third of the root

UNFAVORABLE:
- Hard insoluble pastes placed into the apical one-third of the root that cannot be retrieved and the tooth is not amenable to surgical intervention (apicoectomy/intentional replantation)
Treatment Options for the Compromised Tooth: A Decision Guide features different cases where the tooth has been compromised in both nonendodontically treated teeth and previously endodontically treated teeth. Based on the unique individualized features of each case and patient, there are key considerations in establishing a preoperative prognosis of Favorable, Questionable or Unfavorable. The photographs and radiographs in this guide illustrate favorable outcomes for our patients.

If your patient’s condition falls into a category other than Favorable, referral to an endodontist, who has expertise on alternate treatment options that might preserve the natural dentition, is recommended. If the prognosis of the tooth is categorized as Questionable/Unfavorable in multiple areas of evaluation, extraction should be considered after appropriate consultation with a specialist.

In making treatment planning decisions, the clinician also should consider additional factors including local and systemic case-specific issues, economics, the patient’s desires and needs, aesthetics, potential adverse outcomes, ethical factors, history of bisphosphonate use and/or radiation therapy.

Although the treatment planning process is complex and new information is still emerging, it is clear that appropriate treatment must be based on the patient’s best interests.