Quantitative analysis of cellular composition of human periapical granuloma

Michael H. Stern, DDS, PhD; Samuel Dreizen, DDS, MD; Bruce F. Mackler, PhD; Alan G. Selbst, DMD, MS; and Barnet M. Levy, DDS, MS

The cellular composition of 33 solid and cystic periapical granulomas was quantitated by a differential morphometric technique. Macrophages were the predominant inflammatory cell, followed in descending numerical order by lymphocytes, plasma cells, and neutrophils. Inflammatory cells comprised slightly more than half the formed elements; the others were connective tissue elements. There were no significant qualitative or quantitative differences in the inflammatory components of lesions differing in morphology (solid vs cystic), symptomatology (pain vs no pain), duration (less than one year vs more than one year), and treatment (endodontic intervention vs no intervention). The human periapical granuloma thus reflects a complex of immunologic and nonimmunologic inflammatory reactions.

In humans, the periapical granuloma is a focal accumulation of inflammatory cells and reactive elements attached to a tooth root. The structural components are macrophages, lymphocytes, plasma cells, neutrophils, and fibrovascular elements delimited by an outer fibrous pseudocapsule. Periapical granulomas are invariably preceded by pulpal inflammation. Clinically, the lesions are usually painless, chronic, and expansile.

The specific etiologic factors involved in the induction, maintenance, and resolution of periapical granulomas have not been delineated completely. Presumably, the lesion develops in response to an undefined irritant introduced into the periapical tissues through the root canal. Causative agents may be of bacterial origin (structural proteins, cell wall fragments, metabolites), of host origin (caries-ached dental proteins, inflammation products), or both.

Despite decades of descriptive histopathologic studies, definitive data dealing with the numerical distribution of the inflammatory and reactive cellular elements in periapical granulomas are lacking. Differential quantitative analysis of the lesional components offers an objective means of determining the proportions of cells comprising the lesion. Quantitation of the granuloma cells provides numerical data that could be interpreted statistically and permits comparisons between lesions from different patients. Such analyses also yield fundamental morphologic information, an important prerequisite to an understanding of the biologic nature of the granulomatous response. Accordingly, the present study was undertaken to characterize and quantify the inflammatory and reactive fractions in human periapical granulomas.

MATERIALS AND METHODS

The study material was comprised of 25 periapical granulomas and eight periapical cysts removed during apicectomy. The average age of the patients was 37.2 years; the average duration of the lesions estimated
by history was 2.5 years. Fewer than
one third had caused pain.
The specimens were fixed immedi-
ately in formal alcohol (1 ml 37% for-
aldehyde + 99 ml 95% ethanol) or prewashed in tissue culture
medium RPMI-1640, supplemented
with 1% fetal calf serum and genta-
micin for 48 hours at 4 C before
fixation. After fixation they were
processed through graded alcohols
and xylenes at 4 C and embedded in
56 C paraffin. Sections were cut at 3
to 5 \mu m and stained with hematoxylin
and eosin.
Differential cell counts were made
with a Weibel reticle according to
the modified differential morpho-
metric counting method for enumer-
ating lymphocytes, plasma cells, neu-
rophils, macrophages, connective
(tissue (collagen and fibroblasts), epil-
thelium, and vascular spaces. Sub-
group quantitative comparisons were
made between painful and nonpain-
ful lesions; lesions of up to one year’s
duration and more than one year’s
duration; lesions from patients with
previous endodontic treatment and
from patients without treatment;
and cysts and granulomas. Student’s
t-test for significant differences was
used to compare normalized data
from each subgroup.
RESULTS
A total of 97,744 cells were
counted in the 33 lesions. Macrho-
phages were the predominant in-
flammatory cells, followed by lym-
phocytes, plasma cells, and neutro-
phils. Macrophages constituted 24%,
lymphocytes 16%, plasma cells 7%,
neutrophils 4%, fibroblasts 40%, vas-
cular elements 6%, and epithelial
cells 5% of the cell total. Inflamma-
atory cells made up approximately 52% of the formed elements in the lesion
(Fig 1). When considered solely in
terms of inflammatory cells (Fig 1),
the percentage distribution was mac-
rophages, 46.55% (range 17% to
69%); lymphocytes, 31.97% (range
12% to 62%); plasma cells, 12.94% (range 3% to 34%); and neutrophils,
8.11% (range 0.7% to 25%).
The most common numerical
sequence, macrophage > lympho-
cyte > plasma cell > neutrophil
(group 1), was found in 76% of the
granulomas and 63% of the cysts (Table 1). Lymphocyte > macro-
phage > plasma cells > neutrophil
(group 2) was the sequence in 8% of
the granulomas and 25% of the cysts. Only the differences in
mean lymphocyte percentage among
groups 1, 2, and 3 and in mean
macrophage percentage between
groups 1 and 2 were statistically
significant (Tables 2, 3).
Seven of the 33 patients had pain
before surgical treatment was insti-
tuted (Fig 2). The inflammatory cell
composition in the periapical lesions
from the pain group averaged 45%
macrophages, 36% lymphocytes, 12%
plasma cells, and 7% neutrophils.
The means for the reactive cell com-
ponents were 46% fibroblasts, 2% epil-
thelial cells, and 7% vascular
spaces. The corresponding figures for
the 26 patients in the nonpain group
were 48% macrophages, 31% lym-
phocytes, 13% plasma cells, and 8% neutrophils. Reactive cell mean
were nearly identical to those of the
pain group.
Lesion duration was document-
able in 20 of the 33 patients (Fig 2).
In eight patients with lesions of less
than one year’s duration, the mean
for the enumerated lesional compo-
nents were 50% macrophages, 36%
lymphocytes, 12% plasma cells, 5%
neutrophils, 38% fibroblasts, 3% epil-
thelial cells, and 6% vascular spaces.
The respective means for the 12
lesions of more than one year’s dura-
tion were 47%, 35%, 12%, 7%, 42%,
5%, and 6%.
As with the differentiation of
lesions on the basis of duration, the

Table 1 • Relative quantitative distribution of inflammatory cell patterns in human periapical biopsy specimens.

<table>
<thead>
<tr>
<th>Group</th>
<th>Pattern</th>
<th>Total Cases</th>
<th>Cysts</th>
<th>Granulomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M > L > P > N</td>
<td>24/33 (73%)</td>
<td>5/8 (63%)</td>
<td>19/25 (76%)</td>
</tr>
<tr>
<td>2</td>
<td>L > M > P > N</td>
<td>4/33 (12%)</td>
<td>2/8 (25%)</td>
<td>2/25 (8%)</td>
</tr>
<tr>
<td>3</td>
<td>M > P > L > N</td>
<td>3/33 (9%)</td>
<td>1/8 (13%)</td>
<td>2/25 (8%)</td>
</tr>
<tr>
<td>4</td>
<td>P > M > L > N</td>
<td>1/33 (3%)</td>
<td>0/8 (0%)</td>
<td>1/25 (4%)</td>
</tr>
<tr>
<td>5</td>
<td>L > P > M > N</td>
<td>1/33 (3%)</td>
<td>0/8 (0%)</td>
<td>1/25 (4%)</td>
</tr>
</tbody>
</table>

*M, Macrophage; L, lymphocyte; P, plasma cell; N, neutrophil.
Table 2 • Differential analysis of cell distribution in subgroups based on inflammatory cell patterns.

<table>
<thead>
<tr>
<th>Group</th>
<th>Plasma cell</th>
<th>Lymphocyte</th>
<th>Macrophage</th>
<th>Neutrophil</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>12.94 ± 1.31%</td>
<td>31.97 ± 2.09%</td>
<td>46.52 ± 2.06%</td>
<td>8.11 ± 1.22%</td>
<td>33</td>
</tr>
<tr>
<td>1</td>
<td>12.34 ± 1.09</td>
<td>30.30 ± 1.29</td>
<td>50.69 ± 1.85</td>
<td>7.55 ± 1.12</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>10.25 ± 4.92</td>
<td>49.00 ± 6.36</td>
<td>34.50 ± 2.50</td>
<td>6.20 ± 4.29</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>10.67 ± 3.18</td>
<td>17.66 ± 3.85</td>
<td>43.33 ± 3.76</td>
<td>20.30 ± 3.71</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>34%</td>
<td>23%</td>
<td>33%</td>
<td>2%</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>20%</td>
<td>62%</td>
<td>17%</td>
<td>1%</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3 • Tests of significance using Student's t-test.

<table>
<thead>
<tr>
<th>Group Compared</th>
<th>t</th>
<th>df</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total vs 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC*</td>
<td>0.328</td>
<td>55</td>
<td>>.05</td>
</tr>
<tr>
<td>L</td>
<td>0.611</td>
<td>55</td>
<td>>.05</td>
</tr>
<tr>
<td>M</td>
<td>1.436</td>
<td>55</td>
<td>>.05</td>
</tr>
<tr>
<td>N</td>
<td>0.320</td>
<td>55</td>
<td>>.05</td>
</tr>
<tr>
<td>1 vs 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>0.605</td>
<td>26</td>
<td>>.05</td>
</tr>
<tr>
<td>L†</td>
<td>4.408</td>
<td>26</td>
<td><.001</td>
</tr>
<tr>
<td>M†</td>
<td>3.409</td>
<td>26</td>
<td><.005</td>
</tr>
<tr>
<td>N</td>
<td>0.402</td>
<td>26</td>
<td>>.05</td>
</tr>
<tr>
<td>2 vs 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>1.261</td>
<td>05</td>
<td>>.05</td>
</tr>
<tr>
<td>D†</td>
<td>3.275</td>
<td>05</td>
<td><.025</td>
</tr>
<tr>
<td>M</td>
<td>1.717</td>
<td>05</td>
<td>>.05</td>
</tr>
<tr>
<td>N</td>
<td>2.020</td>
<td>05</td>
<td>>.05</td>
</tr>
</tbody>
</table>

*PC: plasma cell; L, lymphocyte; M, macrophage; N, neutrophil.
†Significant difference.

There were no statistically meaningful quantitative differences in the various inflammatory and reactive cell elements between specimens from patients with and without endodontic treatment (Fig 3, 4). The periapical cysts contained nearly five times the number of epithelial cells found in the periapical granulomas (Fig 4). In all other cellular parameters the cysts and granulomas were quantitatively similar (Fig 4, 5).

DISCUSSION

The modified morphometric method of cell quantitation was used to perform differential cell counts in 33 periapical granulomas and cysts. The results were combined to develop a quantitative pattern of the inflammatory and reactive elements contained therein. Although ranges for some cell constituents exceeded 30%, there was considerable homogeneity in the relative cellular composition. Seventy-three percent of the lesions followed the pattern macrophages > lymphocytes > plasma cells > neutrophils. Despite wide variations in age of lesion, age of patient, and treatment received, the impressive degree of uniformity of cell content suggests a common reaction. Some of the variations in cell frequency probably stemmed from differences in the life span of the various inflammatory cells, differing intensities of stimuli that triggered the cell responses, and the influence of one inflammatory cell on another.

There were no significant differences in the inflammatory cell composition of the periapical lesions in patients who had received endodontic treatment before surgery and those who had not. Endodontic treatment per se did not alter the quality or type of inflammatory response in the periapical tissues despite placement of cytotoxic chemicals in the root canals. Periapical granulomatous disease is thus not iatrogenic in primary causation.

There were no striking differences in inflammatory cell composition between the granulomas and cysts.
The cell types and distribution were essentially the same when analyzed either as relative proportions of cells (subgroup analysis) or as overall cellular composition. The inflammatory response in granulomas and cysts seems to be identical despite the notable and significant increase in number of epithelial cells in the cystic lesions. The cause of differentiation into solid or cystic periapical lesions is not deducible from alterations in the inflammatory cell populations.

The composition of human periapical granulomas where macrophages accounted for almost half and lymphocytes for one third of the inflammatory cells, is consistent with granulomatous inflammation. Macrophages and other mononuclear phagocytes (monocytes, giant cells, epithelioid cells) are the hallmarks of granulomatous inflammation, a specific form of chronic inflammation. Compared with granulomatous inflammation, banal chronic inflammation lacks organization and is a diffuse, heterogeneous cell collection usually dominated by mononuclear cells other than macrophages.

Chronicity is an integral feature of granulomatous inflammation; the average age of the periapical granulomas in this study was 2.5 years. The granuloma persists as long as the provocation exists. The same etiologic agents that cause chronic inflammation can produce granulomas. These are frequently poorly soluble particulate nondegradable compounds or complexes that remain localized in tissue. Some, like mycobacterial products, are good immunogens and induce delayed hypersensitivity and antibody formation in addition to granulomas. Others, such as streptococcal cell wall fragments, produce granulomas with no measurable immune response. Some are toxic to macrophages and hemolyze red blood cells; others are nontoxic and seem to accumulate only in macrophage lysosomes without otherwise damaging the cell. There is also a nonabsolute relationship between the ability of an irritant to activate macrophages and to cause granuloma formation. Thus, endotoxin, a potent in vitro activator of macrophages, a phlogiston, and an immunogen, does not precipitate granuloma formation. Conversely, substances as streptococcal cell wall fragments, mycobacteria, and colloidal carrageenan, activate macrophages and stimulate granuloma formation. Bacterial products, oils, metals, antigen-antibody complexes, and lymphokines are capable of instigating granulomatous inflammation, de-

Fig 4—Quantitative analysis of selected tissue components in biopsy specimens from endodontically involved teeth.
The human periapical granuloma is a relatively homogeneous lesion. Like other granulomas, it is comprised predominantly of macrophages (mononuclear phagocytic cells). The substantial contribution of lymphocytes, the effector cells of the immune system, to the cell content of the lesion suggests a potential

Despite wide differences in chemical composition, lymphocytes, which comprised 32% of the inflammatory cells in the granulomas and cysts evaluated in this study, are always present in chronic inflammation. Lymphocytes have been separated functionally into B and T lymphocytes. B lymphocytes participate in humoral immune reactions by producing and secreting immunoglobulins and are identified primarily by immunoglobulins in their cell membranes. Although they are noted most for antibody production, they also secrete lymphokines on appropriate stimulation. T lymphocytes are so named because of their sojourn in the thymus before entering peripheral lymphoid structures as mature cells. T lymphocytes are the antigen-sensitive effector cells of the cell-mediated immune system responsible for the induction of graft rejection, delayed hypersensitivity, and contact hypersensitivity. The presence of a significant proportion of lymphocytes in the periapical granuloma suggests a role for the immune system in the evolution of this lesion.

Plasma cells, the antibody synthesizing cells of the humoral immune system, comprised approximately 13% of all inflammatory cells in the periapical lesions. Plasma cells may be the effector cells between granulomatous inflammation and humoral immunity. Most evidence of a relationship between granulomas and antibodies is indirect. Antibodies influence granulomatous reactivity, but do not enhance granuloma formation when transferred passively. Specific hyperimmune serum and active sensitization reduce the granulomatous inflammatory response. Serum antibodies are associated with amelioration of human schistosomiasis and diminution of experimental granuloma formation. The humoral immune system may exert a moderating influence on chronic granulomatous inflammatory disease.

The presence of neutrophils in the periapical lesions at an average level of 8% of the cell content denoted a persistent low-grade neutrophilic response. Endotoxins present in root canals with necrotic pulps are known to be chemotactic for neutrophils. Complement components, bacterial products, macrophage biosynthetic and collagen degradative products, and lymphokines in periapical lesions may also chemically attract neutrophils. Neutrophils could contribute to the periapical tissue destruction through release of elastase, collagenase, and cathepsin. They do not seem to be immunologically involved in these lesions.

Persistence of neutrophils in relatively small numbers is not characteristic of any particular disease. They have been described in granulomatous reactions associated with cell-mediated immunity, antigen-induced granulomas, and in some delayed hypersensitivity reactions. They tend to persist in granulomas induced by antigens but not by inert substances as carbon. Neutrophils comprise approximately 60% to 70% of the circulating white cells in peripheral blood and are the first cells at the site of injury. They continue to reenter the site of a recurring irritation, probably in proportion to the strength of the irritant.

SUMMARY AND CONCLUSIONS

The human periapical granuloma is a relatively homogeneous lesion. Like other granulomas, it is comprised predominantly of macrophages (mononuclear phagocytic cells). The substantial contribution of lymphocytes, the effector cells of the immune system, to the cell content of the lesion suggests a potential
for immune-mediated reaction. The presence of plasma cells, the effector cells of the humoral immune system in numbers ranging from 3% to 34%, indicates possible local antibody synthesis. Together with a low-grade persistent lesional neutrophilia, these features are characteristic of an immunologic and nonimmunologic inflammatory response to bacteria or bacterial components productive of granuloma formation. The cellular composition of the periapical granuloma had no relation to symptom, treatment, morphology, or duration.

The authors thank Dr. Stephen F. Schwartz for many of the biopsy specimens and Mrs. Edith N. Swanson for the graphics.

This study was supported in part by grants from the American Association of Endodontics Endowment and Memorial Foundation, and NIH Training Grant no. DE-07029.

Dr. Stern is adjunct assistant professor; Dr. Dreizen is professor and chairman, department of dental oncology; Dr. Selbit is adjunct assistant professor, department of endodontics; and Dr. Levy is professor and director, University of Texas Dental Branch, Dental Science Institute, Houston. Dr. Mackler is clinical associate professor, department of oral pathology, University of Maryland, College of Dental Surgery, Baltimore. Requests for reprints should be directed to Dr. Stern, University of Texas Dental Science Institute, PO Box 20068, Houston, 77025.

References

